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Abstract It is shown that a recursive use of the transformation for a terminating 
3 F 2 ( 1 )  Series used by W b e r  and Erdelyi, which belongs, as shown by Whipple, to 
a set of equivalent 3 F 2 ( 1 )  functions obtained by Thomae, results in a 72-element 
group associated with 18 terminating %lies. The generators, conjugaey classes, invariant 
subgroups, characten and dimensions of irreducible representations for this group are 
presented. 

1. Introduction 

The terminating generalized hypergeometric functions of unit argument, the 3F2( 1) 
and the 4F3(1), have been related to the Wigner (3-j) and the Racah (6-j) coef- 
ficients, respectively, in the literature (see, for example, Smorodinskii and Shelepin 
1972; Biedenharn and b u c k  1981a, b). Starting with the van der Waerden (1932) 
form for the 3-7 coefficient, and resorting to the comprehensive work of Whipple 
(1925) on the symmetries of the 3F2(l) functions, Raynal (1978) obtained ten dif- 
ferent forms for the 3-j coefficient. A set of six 3F2( 1)s of the van der Waerden 
form has been shown (Srinivasa Rao 1978) to be necessaly and sufficient to account 
for the 72 symmetries of the 3-j coefficient. With a transformation for a terminating 
3F2( 1) series, used by Weber and Erdelyi (1952), Rajeswari and Srinivasa Rao (1989) 
derived from the van der Waerden set of six 3F2(l)s, three other sets of 3F2(1)s 
corresponding to the Wigner (1940), Racah (1942) and Majumdar (19.55) forms. They 
also studied the consequences of relating the Majumdar form of 3F2(l)  for the 3-j 
coefficient to the discrete orthogonal Hahn polynomial to obtain recurrence relations 
satisfied by the 3-j coefficient. 

Recently, Beyer er a /  (1987) showed that an identity due to Thomae (1879) be- 
tween two 3 F 2 ( l )  series, together with invariance under separate permutations of 
numerator and denominator parameters, implies that the symmetric group S ,  is an 
invariance group of the non-terminating series. In the same paper, Bailey’s trans- 
formation for the terminating Saalschutzian 4F3 series (Bailey 1935, p 56) is used 
to study the symmetry group of two-term relations for this series, which is also S,. 
Using the relation between the 6-3 coefficient and the terminating Saalschutzian 
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4F3(1), and applying this new symmetry group, it is shown ( b u c k  et a1 1987) that 
the classical group of 144 symmetries (the Regge symmetries of the 6- j  coefficient) 
are extended to a group of 23040 symmetries by extending the domain of these co- 
efficients. Clearly, this extended domain contains also ‘unphysical’ arguments for the 
6 - j  coefficient. Note that the extended symmetry group of order 23040 had already 
been encountered by D’Adda et a1 (1572,1974) in their unified treatment of S U ( 2 )  
and S U ( 1 , I )  6 - j  coefficients. 

It would be of interest to make a similar analysis for the 3- j  coefficient and its 
representing series, the terminating 3Fz(l). Let us point out here that the group 
S, of Beyer er a1 (1987) is the symmetry group of two-term relations for the non- 
terminating 3Fz(l) function. Since it is the terminating 3Fz( 1) series which is related 
to 3-j  coefficients, we study in this article the corresponding symmetry group of two- 
term relations for the same. 

A transformation for a terminating 3 F z ( l )  series given by Weber and Erdelyi 
(1952), when used recursively, is shown to generate all the 18 terminating series on 
which are superposed the trivial S2 x S, symmetry - a consequence of the invariance 
of a given terminating 3Fz(l) series to the permutation of its two numerators (note 
that the third numerator parameter determines the termination of the series) and its 
two denominator parameters. This 72-element finite group of transformations has 
nine conjugacy classes and correspondingly nine irreducible representations (irreps) 
four of dimension one, one of dimension two and four of dimension four. The three 
generators for this 72-element group are given. The smallest invariant or normal 
subgroup, H ,  (say), of this finite group is of order nine, and it is imbedded in an 18 
element invariant subgroup, H I ,  and H,,, in turn, is imbedded in three 36-element 
invariant subgroups. In terms of Whipple’s parameters (1925) for the 3Fz(l), it is 
shown that H ,  is isomorphic to the product of two cyclic groups of order 3. 

The 72-element group G, is shown to be the invariance group of ,F,, which 
is a rescaling of the terminating SF,. Thus it is the group generating all two-term 
relations for this series. The phase factor appearing in such a two-term relation is 
shown to be equal to an irreducible character of G,, motivating the construction of 
the complete character table for G,. Using the van der Waerden form for the 3- j  
coefficient, the implication of the symmetry group G, on 3- j  symbols is investigated. 
The conclusion is similar to that for the 6- j  symbols ( b u c k  et a1 1987): the classical 
group of 72 symmetries (the Regge symmetries of the 3- j  coefficient) are extended to 
a group of 1440 symmetries by extension of the domain of these coefficients. Again, 
this extended domain contains ‘unphysical’ arguments. 

In section 2, the essential notation required is given. In section 3, starting with 
a matrix representing the Weber-Erdelyi transformation for a terminating 3Fz(  1) 
series, the procedure for generating the 72-element group G, is described and the 
Whipple parametrization introduced. In section 4, the structure of the group GT, 
its conjugacy classes, its irreps and their corresponding characters, and the invariant 
subgroups of G, are presented. In section 5, comments and conclusions regarding 
a scaling transformation which makes G, an invariance group of the terminating 
3 F z ( l )  series, the use of the symmetry group in the context of the 3-j  coefficient, 
etc. are made. Finally, in an appendix, the 18 transformations of the 3Fz(l) are 
stated explicitly, in the Whipple notation and in a scaled, invariant form. 

K Srinivasa Rao et a1 
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2. Notation 

Whipple (1925) introduced six parameters pi, i = 0 , 1 , 2 , 3 , 4 , 5 ,  such that 

5 Er; = 0 
i=0 

and let 

1 
elmn = 5 + + T,, + T ,  P,, = 1 + Tm - rn  

With these he defined the function: 

where i , j  and k are used to represent those three numbers out of the six inte- 
gers 0,1,2,3,4,5 not already represented by l ,m and n. The function 3 F 2 ( l )  is 
the generalized hypergeometric function (cf Slater 1966) of unit argument having 
ai,,,ajmn,akmn as its three numerator parameters and pm,,pnI as its two de- 
nominator parameters. By changing the signs of all the r: parameters and using - the 
constraint ( l ) ,  Whipple defined another function: 

In (3) and (4) use is made of the notation: 

r ( z , y , f , .  . .) = r(z)r(y)r(z). . . . (5 )  

By permutation of the suffixes l;tn,n over the six integers 0,1,2,3,4,5, then 60 F, 
functions and 60 F, functions can be written down. If there is no negative integer 
in the numerator parameters, these series converge only if the real parts of qJk 
in (3) and a(,,, in (4) are positive. For the sake of brevity the unit argument of 
the generaiized hypergeometric series wiii not be dispiayed ana it wiii be denoted 
as 3F2[('$)) or 3F?(u,  b,c;  d . e ) ,  the three numerator and the two denominator 
parameters being the variables. 
(Note: The use of 7% as a suffix for the Fn function and also as an index for a and 
0 is continued here as in the literature.) 

3. Terminating series 

Consider the transformation for a terminating 3Fz used by Weber and Erdelyi (1952): 

This formula is one of a set (cf Bailey 1935) obtained by Whipple (1925). If the tive 
parameters of the 3F2 on the LHS of (7) are denoted by the column vector: 

x = ( a ,  b ,  1 - N , d , e )  (7) 
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then the parameters of the 3F2 on the RHS of (7) are obtained when the matrix: 

K Srinivasa Rao et a1 

1 0 0 0 0  
0 - 1 0  0 

0 0 0  

0 1 1 0 0  
u = 0 0 3 0 0  

0 0 2 1 0  I 0 0 2 0 1 -  

operates on z. Note that 1- N is used instead of -N, as a component of the column 
vector 2, since it represents the number of terms in a terminating series. However, 
,F , (a ,b , -N;d , e )  will be denoted by,F,(z). 

Using (6) again, with the roles of d and e interchanged, to transform the RHS of 
(6), Weber and Erdelyi obtained the transformation: 

0 3 - 1 0 0  
a n d  0 0  1 0 0  (12) 

3 0 0 - 2 3 0  
0 0 -2 0 3. 

a , b ,  - N  r(d,e,e + N - a ,d  + N - a )  
3 F 2 (  d , e  ) =  T ( d  + N, e + N ,  d - a ,  e - U )  

(9) 
u . 1 - s . - N  

3F2(l - b+ d - s:l - 6 +  e - s 
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block diagonalizes the generators, and hence all the g E GT, thereby reducing the 
generators for the 5 x 5 representation into the generators for a one-dimensional 
identity irrep (due to -N being kept fixed in (6)) and the generators for a four- 
dimensional faithful irrep given by: 

r l  0 0 01  Y O  1 0 0 1  r l  0 0 0 1  

g ; =  

(13) 
1 0 0 0 1  10  1 0 0 1  I: -4 ; I ’  I o  0 1 0 0 0 0 1 ’  

0 1 0 0 0 0  
0 0 0 1 0 0 
0 0 0 0 1 0  

l o  o o 11 t o  o o 11 t o  o 1 o J  
In t e r m  of Whipple’s parameters and the definitions for F, and F, series given 

by (3) and (4), respectively, the transformation (6) can be written as: 

where a345 = -N. (See appendix and equation (4.3.3.6) in Slater 1966.) In the 
Whipple parameter basis, where 

z’ = (yo, T ~ ,  T ? ,  ‘r3, ‘r4, r 5 )  (15) 

is represented as a column vector, the transformation (14) is equivalent to the 6 x 6 
transformation matrix: 

0 0 0  \: 0 0 -1 

The permutation of the two numerator parameters U and b in the .c2, in terms of 
Whipple parameters is equivalent to an interchange of r1 and p 2 ,  which is induced 
by the matrix: 

1 1 0 0 0 0 0  
0 0 1 0 0 0  

(17) 

t o  o o o o 11 
operating on the basis vector z’, Similarly, the permutation of the two denominator 
parameters d and e in the SF,, is equivalent to the interchange of T~ and v5,  induced 
by: 

1 1 0 0 0 0 0  
0 1 0 0 0 0  

g j =  0 0 0 1 0 0 j: : 1 : : j 
0 0 0 0 1 0  
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These three 6 x 6 matrices generate a six-dimensional reducible representation for 

This six-dimensional representation, in the Whipple parameter basis, 2'. can be 

K Srinivasa Roo et a1 

G,. 

reduced by the similarity transformation, u'-lg: U', with 

' 1  I i - 1  1 0  0 1 
1 0 0 0  

0 - 1 0  0 

0 0 -1 1 -1 

1 1 1 1 1 1  
4 - 2 - 2 0  0 0 
A 2 4 0  0 0 
0 0  0 4 - 2 - 2  
0 0  0 2 2 - 4  
1 1 1 - 1  - 1  -1 

O 0 0 O 0 -1 O -1 ',I 
0 

which block diagonalizes the generators gi, g; and g;, and hence all the g' E q. 
It results in two one-dimensional irreps, one of which is the identity irrep, and a 
four-dimensional faithful irrep with generators: 

0 0  1 0  0 0  1 0 0  0 

[i 1 0  0 0  0 0 0 1  0 0 1 - 1  
i1 a ]  , [i i1 :] and [: :I. (20) 

From (16)-(18) it follows that CT is a subgroup of the permutation group S,. Indeed, 
the generators g: of GT can be represented by 6 x 6 permutation matrices (including 
an overall minus-sign for g;). If we use the cycle notation for an element of S,  
represented by a 6 x 6 permutation matrix, we see from (16)-(18) that 

gi = -(05)(13)(24) 

9; = (12) 

s; = (45) 

where a minus sign for g; is included in order to remember that in the Whipple 
parameter representation this generator is actually a permutation matrix multiplied 
by -1. In the following section it will be v e q  useful to represent elemem of GT 
by means of the above cycle notation, especially for distinguishing between conjugacy 
classes with the same order. 

4. Structure of G, and its irreps 

' h o  elements h and h' of a group G are said to be conjugate if there exists a 
g E G such that h' = ghg-'. This defines an equivalence relation on G, the 
equivalence classes being called the conjugacy classes. Analysis of G,, reveals that 
there are nine conjugacy classes K,, . . . , K,.  A conjugacy class is represented by 
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Table 1. 
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class order k ,  of IC, order of g E Iis representative of g E K, 

~~~ 

one of its elements. In table 1 are given the list of all the conjugacy classes IC;, a 
representative element (given in terms of the generators, and as a permutation matrix 
in cycle notation), the order ki  of ICi (i.e. the number of elements of IC;), and the 
order of the elements of ICi (i.e. the smallest integer s such that gs = 1, for g E ICi). 

Following the general theory of group representations (cf Wybourne 1970 or 
Messiah 1%4), the table of characters for the irreps of G, has been obtained. As 
there are nine conjugacy classes, there are nine inequivalent irreps, which are denoted 
by D ( l J , .  . . , D@). Four irreps are of dimension one, one is oi  dimension two, and 
four are of dimension four. It is only the four-dimensional irreps which are faithful. 
Dble 2 lists the characters. 

Table 2. 

I\; Ii2 Ii3 It., IC5 ICg Ki 11.8 h'g 

Dl') 1 1 1 1 1 1 I 1 1 
D ( 2 )  1 I 1 -1 I 1 -I 1 -1 
DC3) 1 1 I I -1 1 I -1 -1 
D ( ' )  I 1 1 -I -I 1 -1 -1 1 
D ( 5 ) 2  2 2 0 0 - 2  0 0 0 
D16) 4 1 - 2  0 2 0 0 - 1  0 
9::: 4 i -2  0 -2 0 0 i 0 
LX8) 4 - 2  1 2 o 0 - 1  o a 
D(q) 4 -2 1 -2 0 0 1 0 0  

Simply by looking at the traces of g1 and g?, and comparing with the columns IC, 
and fi, (of which g1 and g 2  are representatives) in the character table 2, it is possible 
to conclude that the representation generated by g; ( i  = 1 , 2 , 3 )  is equivalent to 

and that the Whipple parameter representation generated by g i ( i  = 1 , 2 , 3 )  is equiv- 
alent to 

As a consequence, the irreducible representation matrices (13) and (20) for the 
generators of GT are equivalent and both can he labelled by D(6) .  
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The next property to analyse is the simplicity of GT. All the invariant subgroups 
H of GT have been found. Among these there are proper Abelian invariant sub- 
groups, hence GT is neither simple nor semi-simple. Recall that a subgroup H is an 
invariant subgroup (self-conjugate subgroup, normal divisor) if G, HGF’ = H., To 
find invariant subgroups, one can form unions of conjugacy classes and check if they 
close under the group multiplication law. The following inclusions give a complete 
list of the invariant subgroups of GT (the subscript denoting the order of H ) :  

C H,, C GT 
H 9  c H, ,  c HA, c G, i c Hj:, c GT 

where 

H9 = li, U AV2 U ii, 

H I ,  = H 9  U ii6 

H,, = H,, U Ii, 

Hj, = Ei,, U ii, U ii, 

H i ,  = HI, U li, U It-, 

It should bc noted that, in terms of the three generators g, (or 9:) introduced 
previously, one can write 

such that the invariant subgroups (23) can be characterized as follow in terms of H ,  
and the three generators: 

Hi,= HgJJ9293Hg 

H36 = H9 U 9293H9 U gi92Hg U 9193H9 

HA, = Hg U g2g3Hg U 91 Hg U gig?gsHg 

H& = Hg U 9 2 g 3 H 9  U g 2 H g  U 93H9 

(25) 

The smallest invariant subgroup, H,, is easy to characterize. In fact H ,  = C, x C,, 
the direct product of two cyclic groups on three elements. In terms of the Whipple 
parametrization, the generators of the two C,’s are (012) and (345). It is now obvious 
that H 9  is an Abelian invariant subgroup of GT. 

It should be noticed that all the inv2riant subgroups of GT can be found using 
the character table and the fact that those elements h of GT with + ( h )  = @(I) ,  
where + is a (not necessarily simple) character of GT, form an invariant subgroup 
(Ledermann 1977, theorem 2.7). 

Conversely, having the list of all invariant subgroups of GT, one can reconstruct 
the character table, Indeed, the first character st1’ is trivial. Next, if N is one Of H,,, 
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H;, or H&, G I N  is the two element group C,, with non-trivial simple character 
(1 ,  -1). Using the 'lifting process' (Ledermann 1977, theorem 2.6), one obtains the 
simple characters x ( ~ )  and ~ ( ~ 1  from H;,, Hi, and H,, respectively. This 
completes the list of simple characters with ,y(li) = 1. In order to find the remaining 
simple characters, the theory of induced characters can be used. If H is a subgroup 
of G for which a character H4 is known, then 

is a character (simple or compound) of G. Herein, m is the index of H and ki is 
the order of K;. As the simple characters of an Abelian group are well known, H 
is chosen to be H, = C, x C,, thus m = 72/9 = 8. Using the trivial character of 
H ,  Hq5(1)  = (1 ,1 ,1 ,1 ,  1 , 1 , 1 , 1 ,  l), one finds G ~ ( l )  = (8,8,8,0,0,0,0,0,0). By 
means of the inner product for characters of G,, 

it is found that ( G @ l J I X ( I I )  = ( c ; q ( l j l i [ 7 1 )  = (Gd( ' I Ix(31)  (G@(1J lx(4 j )  = 
1. Thus, subtracting ~ ( ~ 1 , .  . . , S I . * '  from '@'I, one obtains G$' = 
(4,4,4,0,0,-4,0,0,0). Since all one-dimensional irreps have been found and 
(cfl lGfl) = 4, it follows that 'fl is twice a simple character, 1.e. '4 '  = 2x('). 
The next simple character, xt6), is immediately deduced from our defining rep- 
resentation (S), (10) and (11). Using a non-trivial character of H ,  H4(?) = 
( 1 ,  1, l , w ,  w ,  w ,  wz,w? ,  w?) ,  where w z  + w + 1 = 0, the inducing process leads 
toG+(*) = (8,2,-4,0,0,0,0,0,0). One can verify that the inner product of G$(2)  

with ,$'I, ~ ( ~ 1 ,  x ( ~ ) .  x(*) and ~ ( ~ 1  is zero, and that ( G & ) I ~ ( 6 ) )  = 1. Subtracting x ( ~ )  
from 'c$(~), one obtains GqY = (4 ,1 , -2 ,0 , -2 ,0 ,0 ,1 ,0) .  Since (Gq5"IG+") = 1, 
it is a simple character, i.e. G4" = $1. Two more simple characters ~ ( ~ 1  and 
need to be found. Using the orthogonality property satisfied by the columns of the 
character table of G,, namely 

it is a straightfonvard exercise to complete the character table. 

5. Comments and conclusions 

Although in the preceeding sections G.,. was generated by three generators, namely 
the Weber-Erdelyi transformation g1 and the two interchange transformations U - b 
(y?) and d - e (g3) it should be noted that C., can actually be generated by only 
two elements. For instance, using the cycle structure notation for the elements of 
G,, the 72-element group G, is generated by (12) and -(0524)(31), i.e. by g2 and 
(g1g3). In fact there are many other examples of pairs of generators for G,. 
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Using the notation of section 1, the Weber-Erdelyi transformation (6) can be 
written in the following form: 

whereas the interchange transformations are: 

In general, this analysis implies that 

3F2(z )  = (factor),F,(gz) Vg E G, (28) 

where this factor is in terms of I^-functions, as in (6j or (9j. i t  wouid be interesting 
if this factor could actually be determined in terms of the group element g. This can 
indeed be done. The most elegant way to obtain this is to perform a scaling on the 
3 Fz (z 1: 

Then the three generating transformations become: 

As G, is generated by gl, gZ and g3, the following result holds: the scaled terminating 
3pz with unit argument satisfies 

2 ? ( 2 )  = 3 F , ( g z )  Vg E G, (for N even) (31) 

3@z(z) = ~ ( ' ) ( g ) ~ p ~ ( g ~ )  V ~ E  G, (for N odd) (32) 

where x(')(y) is the character of g in the irrep D(?j (see section 4). Hence the 
72-element group G, can be seen as the invariance group of the terminating 3F2. If 
N is odd, then the coefficient in (32) is +I or -1, and it is equal to -1 if one of 
the following equivalent conditions is satisfied: 

e g,  appears an odd number of times in the expression of g in terms of gl, g2 and 
93; 
g is a permutation matrix times -1 when represented in the Whipple parametri- 
zation; 
the left and right hand sides of (32) correspond to a Fp and a F,, in terms of the 
notation of section 2. 

The use of the Weber-Erdelyi transformation (6) on the van der Waerden SF? 
form for the 3- j  coefficient (,,,'tl A;? j ; , , )  or (," ) was shown by Rajeswari and 
Srinivasa Rao (1989) to result in the Majumdar, Racah or Wigner 3F2 forms, with or 
without the Superposition of a column permutation and the mi - -mi substitution 
on them. If use is made of any one of the other transformations explicitly listed 

. .  * 
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in the appendix, on the van der Waerden 3Fz form for the 3- j  coefficient, then it 
can be shown that the result would be one of the 12 terminating 3Fz forms given 
in Raynal (1978) (namely, equations (6), (15)-(17), (26)-(30) and three others which 
differ from (15)-(17) by exchange of a and b and change of sign for a ,  p, y in 
Raynal (1978), which include the Majumdar, Racah, Wigner forms) or, one of the 12 
forms on which is superposed a ‘classical’ symmetry of the 3-j coefficient (namely, 
permutations of the columns of the 3-j coefficient and the m, -+ -mi substitution). 

It is well known that one of the van der Waerden forms for the 3-j coefficient 
can be written as follows: 

( 2, 2, 23) = 6(m1 + m, + m3,0)(-1)J1-j2-m3 

Using (33), the three generating elements gl. 9, and g3 of G, lead, respectively, 
to the following symmetries of the 3-j symbol (apart from a phase factor): 

The second and third of these are well known Regge symmetries of the 3- j  symbol, 
while the first has unphysical arguments (the j-values being negative: the triangular 
condition is violated). The classical symmetry group of the 3-j coefficient contains 72 
symmetries, of which (35) and (36) are two elements. Following b u c k  et al (1987), 
who extended the classical Regge group of 144 symmetries of the 6 - j  symbol by the 
.,F3 invariance group S, in order to obtain a new symmetry group of order 23040, 
one can perform the same process here and extend the 72 classical symmetries of 
the 3-j symbol by the symmetries induced by the 72-element group G,. Since (35) 
and (36) are Regge symmetries, already contained in the 72 symmetries, this amounts 
to enlarging these symmetries by the element (34) and to investigating which group 
G it generates. In particular, (34) contains unphysical transformations of the type 
j - - j  - I (preserving the angular momentum eigenvalue j ( j  + I)), known as 
Yutsis mirror symmetries (Yutsis and Bandzaitis 1965). Let us denote j ,  - - j ,  - 1 
by I , ‘ .  It  can be shown by recursively using I,‘ and the column permutations of the 
3-j coefficient that (34) can be transformed into 
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The group G can be generated by the classical symmetries together with r', This new 
group G is of order 1440; it can be interpreted as the extended symmetry group of the 
3-j  coefficient by extending the domain of this coefficient. This extended domain con- 
tains unphysical argument?.. It should be noticed that this extended symmetry group 
of order 1440 has been encountered by D'Adda el a2 (1972), in treating S U ( 2 )  and 
S U ( 1 , l )  3-j  coefficients, and by HuszAr (1972). There are two further obselvations 
to make. The first is that the 'trivial' 3Fz symmetry permuting two of the three nu- 
merator parameters corresponds to a non-trivial Regge symmey for the 3-j symbol 
(in fact, this observation is not new: see Biedenharn and b u c k  (1981b), p 433). 
The second, new, observation is that a 'trivial' 3-j  symmetry (namely j, + - j ,  - 1) 
corresponds to a non-trivial transformation for the terminating 3F2( 1) series, namely 
to (6). 

It is considered relevant to point out the contemporary work of Beyer er ol (1987) 
in the present context. For this purpose, in the Whipple notation (section 2) let 
1, m ,  n be 0, 4, 5 ,  respectively. Then the numerator and denominator parameters 
which occur in Fp(O; 45), given by (3), after elimination of r0 using ( l ) ,  are related 
to the five independent Whipple parameters: 

K Srinivasa Ruo et al 

T = (T- , , v2 ; r3 ,? - . , ,T5)  (38) 

a = AV (39) 

through the transformation: 

where 
1 1 1 

a = (a145 - ? >  - 5,0345 ? > P ~ o  - 1, P 5 0  - 1) 

and 

A = 0 0 1 1 1 .  I:;;;;] (40) 

This 5 x 5 matrix A plays a crucial role in the study of the group structure of 

non-terminating series and establish that the symmetric group S, is an invariance 
group of the two-term relation for the 3F2 series due to Thomae (1879) and the 
invariance of that series to separate permutations of the numerator and denominator 
parameters of the 3F2. 

In this article, we generated a 72-element group GT for the terminating 3F2( I j  
series, presented the conjugacy classes, irreps and their characters, and the invariant 
subgroups of G, and discussed the role of these terminating series for the 3F2(1) 
forms of the 3-j  coefficient. 

The group G,, of interest for us has been arrived at by a simple recursive use of 
a given 3F3(1) transformation and the results presented for the terminating 3F2(l) 
series supplement the work of Beyer et o/ (1985). The structure of the invarlance 
group G, for the terminating ,F?[l) series has turned out to be more intricate 
than that of the symmetric group S5 shown to be the invariance group for the non- 
terminating ,F?(l) series investigated by Beyer e~ o! (1985). Our study contributes 
to a complete understanding of an interesting aspect overlooked in the work of Beyer 
et a/ (1985). 

t\Yo;ter,I? idcarities bg neycr e! a! 110x7) \ - - - ' I .  I ...- m.ev analvw the. g r o q  Struc.tfiX of the 
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Appendix 

In this appendix, the 18 terminating 3F2 transformations are written down explicitly 
as they arise when the Weber-Erdelyi transformation (6) is recursively used. They 
are expressed then in terms of Whipple parametrization and finally using the s c a -  
ing transformation which enabled us to show G, as the invariance group of the 
terminating 3Fz. 

a , b , - N  = 3 F z (  d , e  ) (identity) 
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- - ( 1  - S , N ) ~ ~ ~ ( ~ -  a , d -  b,-N 
( e ,  N )  d , s -  N 

where s =  d + e - a - b + N  and (a,.Ri) = T ( a + N ) / r ( a ) .  Thesetransformations 
reduce to five relations when they are written in terms of Whipple parameters and 
the notation of Whipple given in section 2. They are: 

r(al,,, aiz4, a 1 2 5 ) q o )  = r ( a 0 2 3 ,  ao24, a o 2 5 ) ~ p ( l )  (A.1) 

= r ( a o 1 3 > ~ 0 1 , >  a 0 1 5 ) ~ , ( 2 )  ( A 4  

= (-1)h'r(aizs>~oi3> ao23)Fn(3) (A.3) 

= ( -1)Nr(a1z4> OLO14, a024)b7n(4) ('4.4) 

= (-1)Nr(a125,a015r ao2:,)F,(5) (A31 

where 
(A.l) represents (XIII), (XIV) and (XVII) 
(A.2) represents (III), (IV) and (XVI) 
(A.3) represents (VI), (VII) and (XI) 
(A.4) represents (IX), (X) and (XVIII) 
(AS) represents (I) ,  (V) and (VIII) 

while (XII)-is the identity; (11) and (XV) correspond to F,(O; 45) = F,(O; 35) and 
F,(0;45) = Fp(0;34), respectively. These relations: Fp(0;45) = Fp(0;35) = 
Fp(O; 34) represent the fact that for a given 1, all the ten expressions Fp(L; m n )  (as 
well as, all the ten F,,(L;mn)) are equal. It is for this reason that they are denoted 
simply as F,(/)  or F,(L) above. The relations (A.l) to (AS) are the same as (4.3.3.2) 
to (4.3.3.6) in Slater (1966), who has also tabulated the expressions for a (and p) in 
terms of a,b,c(= - N ) , d ,  e (cf table 4.1 of Slater 1966). The transformation (XI) 
represents the reversal of series. 

I f  the scaling transformation (29) is used in the definitions (3) and (4) for the 
F,( l ;ni .n)  and Fn(l;,nzn) functions, then for u ~ ~ , , , ~  = - N :  

and 



and 

since 

One of us has obtained a relation similar to (A.12) (cf equation (25) in Raynal 
1978). But that relation is different since it is valid for the 3-j  coefficient when 
expressed in terms of a scaled 3F2. 

Of the three generators g1.g2,g3 for GT, in the text, for the generator gl, the 
5 x 5 matrix representating the Weber-Erdelyi transformation (€9, denoted by (I) 
above, was chosen. The 72 elements of the 5 x 5 representation for GT can also be 
generated if y1 is anyone or' the matrices representing the tramformaiion (V-(Xj 
or (XVIII). However, if for y,, the 5 x 5 unit matrix representing (XII) is chosen, 
then it would result in a four-element subgroup of GT. Similarly, choosing (XI) for 
y, results in an eight-element subgroup of GT; choosing (II), (111), (XIV) or (XV) 
for y, results in 12-element subgroups of G,; and choosing (IV), (XIII), (XVI) or 
(XVII) results in 36-element subgroups of the group GT. 

When c = aZ4, = -iV determines the termination of the 3F2 series, from 
the definition (3) for Fl,, it follows that (m, n) can take only the three values 
(3,4), (33) or (4,5). Since any one of the numerator parameters of Fp(l) (namely, 
ailrLn,aj,nnrakn,n) can be a345, the indices i ,  j ,  k are restricted to 5, 4 or 3, which 
in turn implies that I can be only 0, 1 or 2. Therefore, ( m ,  n )  being any two of 3, 4, 
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5 (%,) and 1 being any one of 0, 1, 2 (%,), it is obvious that a345 can occur as a 
numerator parameter in only (3C, x3 C, =) nine series. When T~ is replaced by -p i ,  

instead of the F,(l)  series, the F,,(1) series arise. From the definition (4) for the 
F,(1) series, (j, k), ( i , k )  or ( i , j )  can take the values (3,4), (35) or (43) so that I 
can be 5, 4 or 3 (3C,)  and (n, n) can be only (0,l). (0,2) or (1,Z). Once again there 
are only nine F, series. This explains why in the relations (kl) to (AS) amongst the 
18 terminating 3Fz series, F,(O), F p ( l ) ,  Fp(2) and Fn(3), F,,(4), Fn(5) alone 
occur. 

K Srinivasa Rao et a1 
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