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Abstiract. [t is shown that a recursive use of the transformation for a terminating
3F2(1) series used by Weber and Erdelyi, which belongs, as shown by Whipple, o
a set of equivalent 3 F2(1) functions obtained by Thomae, resuits in a 72-element
group associated with 18 terminating series. The generators, conjugacy classes, invariant
subgroups, characters and dimensions of irreducible representations for this group are
presented.

1. Introduction

The terminating generalized hypergeometric functions of unit argument, the 5 F,(1)
and the ,F;(1), have been related to the Wigner (3-7) and the Racah (6-7) coef-
ficients, respectively, in the literature (see, for example, Smorodinskii and Shelepin
1972; Biedenharn and Louck 1981a, b). Starting with the van der Waerden (1932)
form for the 3-j coefficient, and resorting to the comprehensive work of Whipple
(1925) on the symmetries of the 5 F,(1) functions, Raynal (1978) obtained ten dif-
ferent forms for the 3-j coefficient. A set of six ;F,(1)s of the van der Waerden
form has been shown (Srinivasa Rao 1978} to be necessary and sufficient to account
for the 72 symmetries of the 3-j coefficient. With a transformation for a terminating
3F5(1) series, used by Weber and Erdelyi (1952), Rajeswari and Srinivasa Rao (1989)
derived from the van der Waerden set of six jF,(1)s, three other sets of jF,(1)s
corresponding to the Wigner (1940), Racah (1942) and Majumdar (1955) forms. They
also studied the consequences of relating the Majumdar form of 4 F,(1) for the 3-5
coefficient to the discrete orthogonal Hahn polynomial to obtain recurrence relations
satisfied by the 3-j coefficient.

Recently, Beyer ef al (1987) showed that an identity due to Thomae (1879) be-
tween wo 5 F,(1) series, together with invariance under separate permutations of
numerator and denominator parameters, implies that the symmetric group S; is an
invariance group of the non-terminating series. In the same paper, Bailey's trans-
formation for the terminating Saalschitzian ,F; series (Bailey 1935, p 56) is used
to study the symmetry group of two-term relations for this series, which is also S..
Using the relation between the 6-; coefficient and the terminating Saalschiitzian
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4F3(1), and applying this new symmetry group, it is shown (Louck et al 1987) that
the classical group of 144 symmetries (the Regge symmetries of the 6-5 coefficient)
are extended to a group of 23040 symmetries by extending the domain of these co-
efficients. Clearly, this extended domain contains also ‘unphysical’ arguments for the
6-j coefficient. Note that the extended symmetry group of order 23040 had already
been encountered by D’Adda et al (1972,1974) in their unified treatment of SU(2)
and SU(1,1) 6-7 coefficients.

It would be of interest to make a similar analysis for the 3-; coefficient and its
representing series, the terminating ,F,(1). Let us point out here that the group
Sy of Beyer e al (1987) is the symmetry group of two-term relations for the non-
terminating 5 F;,(1) function. Since it is the terminating 5 F,,(1) series which is related
to 3-7 coefficients, we study in this article the corresponding symmetry group of two-
term relations for the same.

A transformation for a terminating , F,(1) series given by Weber and Erdelyi
(1952), when used recursively, is shown to generate all the 18 terminating series on
which are superposed the trivial S, x S, symmetry — a consequence of the invariance
of a given terminating 5 F,(1) series to the permutation of its two numerators (note
that the third numerator parameter determines the termination of the series) and its
two denominator parameters. This 72-element finite group of transformations has
nine conjugacy classes and correspondingly nine irreducible representations (irreps)
four of dimension one, one of dimension two and four of dimension four. The three
generators for this 72-element group are given. The smallest invariant or normal
subgroup, Hy (say), of this finite group is of order nine, and it is imbedded in an 18
element invariant subgroup, H,; and H,,, in turn, is imbedded in three 36-clement
invariant subgroups. In terms of Whipple’s parameters (1925) for the ;F,(1), it is
shown that H, is isomorphic to the product of two cyclic groups of order 3.

The 72-element group Gy is shown to be the invariance group of , F},, which
is a rescaling of the terminating , F,. Thus it is the group generating all two-term
relations for this series. The phase factor appearing in such a two-term relation is
shown to be equal to an irreducible character of G, motivating the construction of
the complete character table for G. Using the van der Waerden form for the 3-3
coefficient, the implication of the symmetry group G on 3-7 symbols is investigated.
The conclusion is similar to that for the 6-7 symbols (Louck et al 1987): the classical
group of 72 symmetries (the Regge symmetries of the 3-5 coefficient) are extended to
a group of 1440 symmetries by extension of the domain of these coefficients. Again,
this extended domain contains ‘unphysical’ arguments.

In section 2, the essential notation required is given. In section 3, starting with
a matrix representing the Weber—Erdelyi transformation for a terminating 5 F,(1)
series, the procedure for generating the 72-element group G- is described and the
Whipple parametrization introduced. In section 4, the structure of the group Gr,
its conjugacy classes, its irreps and their corresponding characters, and the invariant
subgroups of G are presented. In section 5, comments and conclusions regarding
a scaling transformation which makes G an invariance group of the terminating
5F,(1) series, the use of the symmetry group in the context of the 3-j coefficient,
etc. are made. Finally, in an appendix, the 18 transformations of the 5 F,(1) are
stated explicitly, in the Whipple notation and in a scaled, invariant form.
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2. Notation

Whipple (1925} introduced six parameters r;, i = 0,1, 2,3,4, 5, such that

5
S =0 M

=0
and let
afmn=%+rf+rm+rn ﬁmn=1+rm_rn' (2)
With these he defined the function:
1 cx; o o 11
F, (1 mn) = A IO
A F(aijk‘.'ﬁmhﬂnf)a ? ﬁmhﬁnl

where 7,7 and k are used to represent those three numbers out of the six inte-
gers 0,1,2,34,5 not already represented by [,m and n. The function 3F;(1) is
the generalized hypergeometric function (cf Slater 1966) of unit argument having
Cimns%jmnr Xpmn 88 its three numerator parameters and 3,.,, 3,, as its o de-
nominator parameters. By changing the signs of all the r; parameters and using the
constraint (1), Whipple defined another function:

1 al'k’al'kaal”5l)
EF (I;mn) = F. i } 4 . 4
ﬂ.( ) F(afm,n! ‘Bfm5ﬁfn)3 2( ﬁlm!ﬂfn ( )

In (3) and (4) use is made of the notation:
M{z,y,z,...)=T(=)[(I(=).... (5)

By permutation of the suffixes [, ,n over the six integers 0,1,2,3,4,5, then 60 Fp
functions and 60 F, functions can be written down. If there is no negative integer
in the numerator parameters, these series converge only if the real parts of «;
in (3) and «,,, in (4) are positive. For the sake of brevity the unit argnment of
the generalized hypergeometric series will not be displayed and it will be denoted
as 3F2{(aéféc)) or 4 F,(a,b,¢;d,e), the three numerator and the two denominator
parameters being the variables.

(Note: The use of n as a suffix for the F,, function and also as an index for o and
3 is continued here as in the literature.)

3. Terminating series

Consider the transformation for a terminating 5 F, used by Weber and Erdelyi (1952):

p (@b~ NY _I(d,d+ N -a) a,e—~b,—N
372\ de /T T(d+N,d-—a)* *\14+a-d- N,e/’

(6)

This formula is one of a set (cf Bailey 1935) obtained by Whipple (1925). If the five
parameters of the ,F,, on the LHS of (7) are denoted by the column vector:

z=1(a,b,1-N,d,e) )]
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then the parameters of the 3 F, on the RHS of (7) are obtained when the matrix;

1 0 0 0 0
0 -1 0 0 1

a=(0 0 1 0 0 @®)
1 0 1 -1 0
0 0 0 0 1

operates on . Note that 1— /N is used instead of — N, as a component of the column
vector @, since it represents the number of terms in a terminating series. However,
3fy(a,b,~N;d,e) will be denoted by 3 F,(z).

Using (6) again, with the roles of d and e interchanged, to transform the RHS of
(6), Weber and Erdelyi obtained the transformation:

F(a,b,—N)__I‘(d,e,e+N—-a,d+N—a)
372\ dye /) T{d+ N,e+ N,d—a,e—a)

a.l—s8,-N
X3F2(l—b+d—5,l—b+e—s) ©)

where s = d + e — a — b + N. The question arises as to whether this recursive use
of the Weber—Erdelyi transformation (6) can be continued. In fact, such a procedure
when continued results in a group of 72 transformations, which are the 18 terminating
3 F, series (see appendix) on which are superposed the a — &, d «~ e and (a < b,
d — e) interchanges.

Let g, be the matrix

01 0 00
1 00 0 0

go,=i0 0 1 0 0O (10)
0 0 6 1 0
0 00 01

which interchanges « and b when it operates on @ and denote by g, the matrix:

1 00 00
01 00 0

ge= |0 0 1 0 0O (1)
000 01
0 0 01O

which interchanges d and e when it operates on x. By forming all possible products
of all possible powers of g,,g, and g,, a group of 72 transformation matrices can
be generated which provides a 5 x 5 representation for the terminating series, with
(7) as the basis. Thus, ¢,,g, and g, are the generators of a group Gy for the
transformations of a terminating 5 F,, series, with gf =1, for i = 1,2,3.

A similarity transformation, u~!g,u, with:

ri 0 10 07 i3 0 -1 0 07
01100 ]l03 -1 00

u=[0 0 3 0 0 and u'1=§001 0 0 (12)
002 10 0 0 -2 3 0
00 201 0 0 -2 0 3



Group theory for 5 F, 865

block diagonalizes the generators, and hence all the g € G, thereby reducing the
generators for the 5 x 5 representation into the generators for a one-dimensional
identity irrep (due to —N being kept fixed in (6)) and the generators for a four-
dimensional faithful irrep given by:

1 0 0 0 010 0 1 00 0
0 -1 0 1 1 0 0 0 010 0
1 0 -1 0]'|oo 1ol |oo o1 (13)
0 0 0 1 0 0 0 1 0010

In terms of Whipple’s parameters and the definitions for F,, and F), series given
by (3) and (4), respectively, the transformation (6) can be written as:

145) = (-1)V LL2us: o) 7 (50 14
L{ota3, @y04)

where o, = —N. (See appendix and equation (4.3.3.6) in Slater 1966.) In the
Whipple parameter basis, where

z' = (7'01 T1s Tay Tay Ty 7'5) (15)

is represented as a column vector, the transformation (14} is equivalent to the 6 x 6
transformation matrix:

o0 0 0 0 0 -1
0o 0 o0 -1 0 0
, o o o 0o -1 o0
Bi=lo -1 0o 0 0 0 (16)
0 0 -1 0 0 0
-1 06 0 0 0 0

The permutation of the two numerator parameters « and b in the 3 F, in terms of
Whipple parameters is equivalent to an interchange of =, and r,, which is induced
by the matrix:

(17)

[ e B ae B o o B o
[ I o T e I e L .
[on B e R an I o BN oo
o -00 00
| e e B e I e T e

operating on the basis vector z’. Similarly, the permutation of the two denominator
parameters d and e in the 5, is equivalent to the interchange of », and ry, induced

by:

(18)

5.
il
la R I o T e T e
o000 QO
S CcCoO-H OO
oo~ O oo
O C OO0
o O 000
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These three 6 x 6 matrices generate a six-dimensional reducible representation for
G
T-

This six-dimensional representation, in the Whipple parameter basis, =’, can be
reduced by the similarity transformation, u'~! gl+/, with:

11 0 0 1
1 -1 1 0 o0 1
W=l 0 =1 0 0 1
1 0 ¢ 1 0 -1
1 0 0 -1 1 -1
1 0 0 0 -1 -1
(19)

1 1 1 1 1 1

[4 -2 -2 0 0 o]

g1-1j2 2 -4 0 o o

6{0 0 0 4 -2 -2

0 0 0 2 2 -4

1 1 1 -1 -1 -1

which block diagonalizes the generators g{, g5 and g3, and hence all the ¢' € Gr.
It results in two one-dimensional irreps, one of which is the identity irrep, and a
four-dimensional faithful irrep with generators:

00 o0 1 1 0 00 100 0
0 0 -1 1 1 -1 0 0 010 0
1 -1 0 ol'|o 0o 10/ |g o1 o} @O
1 0 0 0 0C 0 0 1 001 -1

From (16)-(18) it follows that G'y is a subgroup of the permutation group S,. Indeed,
the generators g! of G can be represented by 6 x 6 permutation matrices (including
an overall minus-sign for g{). If we use the cycle notation for an element of S
represented by a 6 x 6 permutation matrix, we see from (16)-(18) that

g, = —(05)(13)(24)
gz = (12)
gz = (45) (21)

where a minus sign for g is included in order to remember that in the Whipple
parameter representation this generator is actually a permutation matrix multiplied
by ~1. In the following section it will be very useful to represent elements of Gy

by means of the above cycle notation, especially for distinguishing between conjugacy
classes with the same order.

4. Structure of G and its irreps

Two clements A and k' of a group G are said to be conjugate if there exists a
g € G such that A’ = ghg~!. This defines an equivalence relation on G, the
equivalence classes being called the conjugacy classes. Analysis of G, reveals that
there are nine conjugacy classes K,..., K, A conjugacy class is represented by
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Table 1.
class order k; of K order of g € K representative of ¢ € K;
Ky 1 0 gi=1 1

2 4 3 §1829193 (345)

5 4 3 (929193)* (012)(345)
Ky 6 2 91 —(05)(13)(24)
e [ 2 g2 (12)

Ke 9 2 g203 (12)(45)
Kq 12 ] gz291403 —(051324)
Ke 12 6 gi1gagegige  (021)(34)
Ky 18 4 g1 92 —(05)(1423)

one of its elements. In table 1 are given the list of all the conjugacy classes K, a
representative element (given in terms of the generators, and as a permutation matrix
in cycle notation), the order k; of I; (i.e. the number of elements of K7), and the
order of the elements of K; (i.e. the smallest integer s such that g* =1, for g € K ).

Following the general theory of group representations (¢f Wybourne 1970 or
Messiah 1964), the table of characters for the irreps of G4 has been obtained. As
there are nine conjugacy classes, there are nine inequivalent irreps, which are denoted
by DU, ..., D). Four irreps are of dimension one, one is of dimension two, and
four are of dimension four. It is only the four-dimensional irreps which are faithful.
Table 2 lists the characters.

Table 2.
K,y R, i, K, Ky K Ky Ky Ky

b 1 1 1 1 1 1 1 1 1
D) 1 1 1 -1 1 1 -1 1 -1
D 1 1 1 1 -1 1 1 -1 -1
D 1 1 1 -1 -1 1 -1 -1 1
D&} 2 2 2 0 0 -2 g 0 0
D 4 1 -2 [t 2 0 0 -1 0
) 4 i -2 0 -2 0 0 i 0
pie) 4 ~2 1 2 4] Q -1 0 0
falt) 4 -2 1 -2 0 0 1 0 i}

Simply by looking at the traces of g, and g., and comparing with the columns A,
and K, (of which ¢, and g, are representatives) in the character table 2, it is possible
to conclude that the representation generated by g; (¢ = 1, 2,3) is equivalent to

D\ g pLo)

and that the Whipple parameter representation generated by gi(¢ = 1,2,3) is equiv-
alent to

DWW g DR g DO,

As a consequence, the irreducible representation matrices (13) and (20) for the
generators of Gy are equivalent and both can be labelled by D'®).
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The next property to analyse is the simplicity of G, All the invariant subgroups
H of G have been found. Among these there are proper Abelian invariant sub-
groups, hence Gy is neither simple nor semi-simple. Recall that a subgroup H is an
invariant subgroup (self-conjugate subgroup, normal divisor) if G HGZ! = H, To
find invariant subgroups, one can form unions of conjugacy classes and check if they
close under the group multiplication law. The following inclusions give a complete
list of the invariant subgroups of G (the subscript denoting the order of H):

C Hgs C G
Hy CHy3§ CHp C Gy (22)
C HY,C Gy

where
Hy=K UK,UKj,
H,,=H,URK;
Hys = Hig UL (23)

Tri

Hi = H UK, UK,
HY = H,,U K, U K,

It should be noted that, in terms of the three generators g, (or g} introduced
previously, one can write

Kg¢ = g,934, Ky=g19:H,5
K, UK, =g H; K UKg= g, Hyg (24)

such that the invariant subgroups (23) can be characterized as follows in terms of H
and the three generators:

Hyg=HoUg,g3Hy

Hge = Hy U goga Hy U gy9,Hg U 91938 5
Hys = HyUg,g,Hy U g HyU g,9,95Hg

Hge = HyUgagaHy U gy Hy U gsHyg.

The smalfest invariant subgroup, H,, is easy to characterize. In fact Hy = C3 x Cj,
the direct product of two cyclic groups on three elements. In terms of the Whipple
parametrization, the generators of the two Cy's are (012) and (345). It is now obvious
that H, is an Abelian invariant subgroup of Gr.

It should be noticed that all the invatiant subgroups of Gy can be found using
the character table and the fact that those elements i of G with ¢(h) = &(1),
where ¢ is a (not necessarily simple) character of Gy, form an invariant subgroup
(Ledermann 1977, theorem 2.7).

Conversely, having the list of all invariant subgroups of G, one can reconstruct
the character table. Indeed, the first character x'!) is trivial. Next, if N is one of Hy,
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Hi, or HY;, G/N is the two element group C,, with non-trivial simple character
(1,-1). Using the ‘lifting process’ (Ledermann 1977, theorem 2.6), one obtains the
simple characters x(®, x® and x(* from HY, Hj, and H,, respectively. This
completes the list of simple characters with ) = 1. In order to find the remaining
simple characters, the theory of induced characters can be used. If H is a subgroup
of G for which a character ¥ ¢ is known, then

m

k’ Hﬁb(’UJ) wEI\'iﬂH
i w

G¢i=

is a character (simpie or compound) of G. Herein, n is the index of H and k; is
the order of K. As the simple characters of an Abelian group are well known, H
is chosen to be H, = Cy x C;, thus m = 72/9 = 8. Using the trivial character of
H, H¢p =(1,1,1,1,1,1,1,1,1), one finds ¢! = (8,8,8,0,0,0,0,0,0). By
means of the inner product for characters of Gy,

9
(Bl¥) = Z

it is found that (Cg(Dx(1) = (F@|\®) = CeiD) = (Gg]yh) =
1. Thus, subtracting yU!,...,x* from S}, one obtains ¢ =
{4,4,4,0,0,—4,0,0,0). Since all one-dimensional irreps have been found and
(G¢'|S¢') = 4, it follows that ©¢ is twice a simple character, ie. C¢' = 2y
The next simple character, x'°), is immediately deduced from our defining rep-
resentation (8), (10) and (11). Using a non-trivial character of H, (%)
(1,1,1,w,w,w,w’,w?, w?), where w? + w + 1 = 0, the inducing process leads
to ¥ = (8,2,-4,0,0,0,0,0,0). One can verify that the inner product of & $(?)
with X, x(®, %3, x(*) and (%) is zero, and that (¢ ¢(*)|x{¥)) = 1. Subtracting x(®)
from ¢}, one obtains ¢ = (4,1,-2,0,-2,0,0,1,0). Since (¢"|F¢") = 1,
it is a simple character, i.e. ¥¢” = x("). Two more simple characters x(®) and (%
need to be found. Using the orthogonality property satisfied by the columns of the
character table of G, namely

. 1
TG
Z XX = 5,-,,-

it is a straightforward exercise to complete the character table.

5. Comments and conclusions

Although in the preceeding sections G was generated by three generators, namely
the Weber-Erdelyi transformation ¢, and the two interchange transformations ¢ — b
(y5) and d — e (gg) it should be noted that G'p can actually be generated by only
two elements. For instance, using the cycle structure notation for the elements of
G, the 72-clement group G is generated by (12) and —(0524)(31), i.e. by g, and
{g,95)- In fact there are many other examples of pairs of generators for Gr.
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Using the notation of section 1, the Weber-Erdelyi transformation (6) can be
written in the following form:

N'd,d+ N —
sFi=) = R i Fr6:2) 26)

whereas the interchange transformations are:

aby(e) = 3 F3{gow) aby(z) = 3 Fy(gse). (27)
In general, this analysis implies that

345 (=z) = (factor); Fo(gx) Yg € Gy (28)

where this factor is in terms of I"-functions, as in (6) or (9). it would be interesting
if this factor could actually be determined in terms of the group element g. This can
indeed be done, The most elegant way to obtain this is to perform a scaling on the

aFy(z):

T(d+ N,e+ N)

3F2($) = F(d,e)

3 F5(z). (29)

Then the three generating transformations become:

3F2(‘1’) = (_l)N 3F2(91$)
3F2($) = 3F2(ng)=3pg(g3m)- (30

As G is generated by g,, g, and g, the following result holds: the scaled terminating
3£, with unit argument satisfies

1Fy() = 4 Fy(gw) vge Gy  (for Neven)  (31)
oFy(@) = x"(g)Fulge)  Vge Gy (for N odd) (32)

where x'?){(g) is the character of g in the irrep D'?) (see section 4). Hence the
72-element group G can be seen as the invariance group of the terminating 5 F,. If
N is odd, then the coefficient in (32) is +1 or -1, and it is equal to —1 if one of
the following equivalent conditions is satisfied:

s g, appears an odd number of times in the expression of ¢ in terms of g,, g, and
g3

e g is a permutation matrix times —1 when represented in the Whipple parametri-
zation;

o the left and right hand sides of (32) correspond to @ ¥, and a £ in terms of the
notation of section 2.

The use of the Weber-Erdelyi transformation (6) on the van der Waerden 4 F),
form for the 3-j coefficient (7' 72 % }or (] g %) was _shown by Rajeswar‘i and
Srinivasa Rao (1989) to result in the Majumdar, Racah or Wigner , F, forms, with or
without the superposition of a column permutation and the m; — —m; substitution

on them. If use is made of any one of the other transformations explicitly listed
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in the appendix, on the van der Waerden ;F, form for the 3-j coefficient, then it
can be shown that the result would be one of the 12 terminating , F, forms given
in Raynal (1978) (namely, equations (6), (15)-(17), (26)—(30) and three others which
differ from (15)-(17) by exchange of ¢ and b and change of sign for o, 3, v in
Raynal (1978), which include the Majumdar, Racah, Wigner forms) or, one of the 12
forms on which is superposed a ‘classical’ symmetry of the 3-5 coefficient (namely,
permutations of the columns of the 3-j coefficient and the m; — ~m,; substitution).

It is well known that one of the van der Waerden forms for the 3-j coefficient
can be written as follows:

(31 5 33)=5(m1+m2+m3,0)(—1)"1'”"”3

my My My
X [(=dy + dg 4 33)1(F) — Ja + Fa)M(ds — my)!(J5 ~ ma)!
x (Jy + m N(Gs + ms)!]”z
x [(G1 4 Ja = 3a)My + do + g + UG — m)HG, + my)7H2
x [(G5—dy —m)ig — F, + m)Y™!

—Ji+ M. —Fa— e, —j —Jy+ 3.
x4 F, . . A . HE 33
3 ‘( T4 ga—3,—my, 14j;—3,+m, (33)

Using (33), the three generating elements g,, g, and g, of G lead, respectively,
to the following symmetries of the 3-7 symbol (apar: from a phase factor):

(jl —Jjs—1 ‘jz‘l) (34)

ml TTL3 ?TLZ

( ) (4 '+ Jo — mg)/2 . (7, f"jz + my)/2 _j:a ] ) (35)
(Jy—Jotmy—my)/2 (Gy—do—my+my)/2 =4+ s

( G+ 3+ mag)/2 (I + 52— my)/2 CJs ) (36)
(=g1+ st my—my)/2 (=, +Fe—m +my)/2 j, -,

The second and third of these are well known Regge symmetries of the 3-7 symbol,
while the first has unphysical arguments (the j-values being negative; the triangular
condition is violated). The classical symmetry group of the 3-j coefficient contains 72
symmetries, of which (35) and (36) are two elements. Following Louck et al (1987),
who extended the classical Regge group of 144 symmetries of the 6-j symbol by the
4 F3 invariance group S; in order to obtain a new symmetry group of order 23040,
one can perform the same process here and extend the 72 classical symmetries of
the 3-j symbol by the symmetries induced by the 72-element group G'p. Since (35)
and (36) are Regge symmetries, already contained in the 72 symmetries, this amounts
to enlarging these symmetries by the element (34) and to investigating which group
G it generates. In particular, (34) contains unphysical transformations of the type
J — —j — 1 (preserving the angular momentum eigenvalue j{j + 1)), known as
Yutsis mirror symmetries (Yutsis and Bandzaitis 1965). Let us denote j, — ~j, — 1
by »'. It can be shown by recursively using »' and the column permutations of the
3-j coefficient that (34) can be transformed into

_jl ~1 1 Ja (37)
My My Mg,
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The group (' can be generated by the classical symmetries together with /. This new
group G is of order 1440; it can be interpreted as the extended symmetry group of the
3-5 coeflicient by extending the domain of this coefficient. This extended domain con-
tains unphysical arguments. It should be noticed that this extended symmetry group
of order 1440 has been encountered by D’Adda ef al (1972), in treating SU(2) and
SU(1,1) 3-j coefficients, and by Huszdr (1972). There are two further observations
to make. The first is that the “trivial’ , F, symmetry permuting two of the three nu-
merator parameters corresponds to a non-trivial Regge symmetry for the 3-7 symbol
(in fact, this observation is not new: see Biedenharn and Louck (1981b), p 433).
The second, new, observation is that a ‘trivial’ 3-5 symmetry (namely j, — —3, — 1)
corresponds to a non-trivial transformation for the terminating 5 F5,(1) series, namely
to (6).

It is considered relevant to point out the contemporary work of Beyer et al (1987)
in the present context. For this purpose, in the Whipple notation (section 2) let
{[,m,n be {, 4, 5, respectively. Then the numerator and denominator parameters
which occur in F(0;45), given by (3), after elimination of r, using (1), are related
to the five independent Whipple parameters:

7= (1), Ty, T3y T4y 5 ) (38)
through the transformation:
a= Ar (39)
where
a = (0 — %aams - %:0’345 - %a By — 1,850 — 1)
and
T 0 0 1 1t
01 0 1 1
A=|0 0 1 1 1 (40)
11 1 2 1
1 1 1 1 2

This 5 x 5 matrix A plays a crucial role in the study of the group structure of
two-term identities by Beyer er gf (1987). They analyse the group structure of the
non-terminating series and establish that the symmetric group S5 is an invariance
group of the two-term relation for the ,F, series due to Thomae (1879) and the
invariance of that series to separate permutations of the numerator and denominator
parameters of the 5 F.,.

In this article, we generated a 72-element group Gy for the terminating 5 £,(1)
series, presented the conjugacy classes, irreps and their characters, and the invariant
subgroups of G and discussed the role of these terminating series for the 5 F,(1)
forms of the 3-j coefficient.

The group Gr, of interest for us has been arrived at by a simple recursive use of
4 given 4 Fy(1) transformation and the results presented for the terminating 5 I,(1)
series supplement the work of Beyer et a/ (1985). The structure of the invariance
group Gp for the terminating , F,(1) series has turned out to be more intricate
than that of the symmetric group S, shown to be the invariance group for the non-
terminating 5 F,(1) series investigated by Beyer et al (1985). Our study contributes
to a complete understanding of an interesting aspect overlooked in the work of Beyer
et al (1985).
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Appendix

In this appendix, the 18 terminating , F, transformations are written down explicitly
as they arise when the Weber—Erdelyi transformation (6) is recursively used. They
are expressed then in terms of Whipple parametrization and finally using the scal-
ing transformation which enabled us to show Gy as the invariance group of the
terminating 4 F,.

a, b, —N d—a, N) a,e—b,—N
3F2( ):(——3FQ( ) 0]

d.e (4. N) d+a—d- N,e,
_ y{l=—s,N) e—a,e—5b,~-N
= oS g e (1
_f{d—a,N)e—a,N) a,1—s,—-N )
A e ™ it a—d-N14a—e—N (I

_{d—a,N)b,N) e~-b,1—d—N,-N
T (d,N)(e, N) 3F2(1—b—N,1+a-—d—N) (V)

=M3F2( e—a,b,-N ) R,

(d, N) 1+b-d—N,e
v (1= 5, N)(b, N) e—bd—b—N
=(-n" (d, N)e, N) ‘ﬂ(i—&—lmrs-lwf> VD
n{l—8,N)ae,N) e—a,d—a,—N
= (- \%
) T Mte ™y 2\l —e-Ns- N (VD)
_ 1)N(d—a,N)(d—b,N) l-s,1-d— N,—-N
== (d, N)(e,N) * *\l4+a-d-N,1+b-—d~N
(VIID)
_ Nle—u, Nj a,d—06,-N
=0T 3F‘-’(d,1+a—e—1\r ()

o nle—aN)e=bN) [ l-sl-e-N,-N
=0 e Ut e—e-Natboe—n) &

— w(a N6 N) l—d-N,l—e~N,-N’
=1 (d,N)(e,N)3F2( l-a-N,1-b-N ) (XI)

b,-N . .
= 3F2 (a’die ) (ldelltltY) (XII)
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B (d(;,!};’])\;?e(,a&?r)s : (1 ~. C—L’llv,—ldfbn_f’; N N) (XI11)
- . —(ziﬁigz,}b{ms (1+b_5’_.1;r,81’::_e_N) (XIV)
- (i(;_,%}_’lapz (d_ Zj: ?\}_N) (XV)
S s ] (ORI RN XV
) (“(’d]% ;(;l;V])V) +%3 (1 ii; ilif ,_16+_bj\—r’ . ! N) (XVIT)
B %%ﬁ 2 (d,bf Vool N) (XVIII)

where s = d+e—a—b+4 N and (a, N) = ['(a+ N)/T(a). These transformations
reduce to five relations when they are written in terms of Whipple parameters and
the notation of Whipple given in section 2. They are:

F(a1231a124’a125)}'—})(0) = ['(og23s o2qs aozs)Fp(l) (A1)
= I'(agiar @niss a0]5)Fp(2) (A.2)
= (~1}¥ (@535 Q0135 Vg23) Fo(3) (A.3)
= (1) (@245 Qo145 @p24) F (4) (Ad)
= (=1)V (g5, Qprss Cgas ) F (5) ‘ (A.5)
where

(A.1) represents (XIII), (XIV) and (XVII)

(A.2) represents (111}, (IV) and (XVI)

(A.3) represents (VI), (V1) and (XI)

(A.4) represents (IX}, (X) and (XVIII)

(A.5) represents (I3, (V) and (VIII)
while (XII) is the identity; (II} and (XV) correspond to F,(0;45) = F,(0;35) and
F,(0;45) = F,(0;34), respectively. These relations: F(0;45) = F,(0;35) =
F »(0;34) represent the fact that for a given /, all the ten expressncms F (l mn} (as
well as, all the ten F, ({;mn)) are equal. It is for this reason that they arc denoted
simply as F,({) or F, (l) above. The relations (A.1) to (A.5) are the same as (4.3.3.2)
to (4.3.3.6) 1n Slater (1966) who has also tabulated the expressions for « (and J) in
terms of a,b,e(= —N),d, e (cf table 4.1 of Slater 1966). The transformation (XI)
represents the reversal of series

If the scaling transformation (29) is used in the definitions (3) and (4} for the

F (! mn) and F,_(l;mn) functions, then for o, , = —-N:
1 . fo e -N
F,(l;mn) = — 3F2( A ) (A.6)
) Ll < Um’"‘gp;) \ HMmir Mal /
and
1 = (oo, —N
F,(l;mn) = 3F3( ik Tik s : (A7)
F(almnﬂo'khnakrm) Bims Bin
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Redefining:
Fo(timn) = T{ay, 040,045, Fp (L mn) (A.8)
and
Fn(l;mn) = F(afmn!akln’aklm)Fn(‘!;mn) (A'g)
for ages = — N, the relations (A1) to (A.5) will now become simply:
F(0) = F,(1) = F(2)
: ) _ (A10)
= (-DVEF(3) = (=) F(4) = (- 1)V EF,(5)
since
Fp(o) = [ayag, aypqy 0155) FL(0)
Fp(l) = [(evgpas gy gas 1, (1)
F,(2) = T(ans; o4s @ns) Fp(2) (A.11)
Fp(3) = I'(ayg3, i3, @gaz) £, (3)
Fp(4) = T(pqs 0y gag ) F, (4)
F‘p(S) = T35, 15, 0igpg ) F (5
In general, for any «,,, = —N, the relations among the 18 terminating series
would be:

F (i) = F(j) = F,(k)
(A.12)

= (- F () =(=1)VE (m) =(=1)VE (n).

One of us has obtained a relation similar to (A.12) (cf equation (Z5) in Raynal
1978). But that relation is different since it is valid for the 3-; coefficient when
expressed in terms of a scaled ; Fi,.

Of the three generators g,, g., ga for G, in the text, for the generator gy, the
5 x 5 matrix representating the Weber-Erdelyi transformation (6), denoted by (I)
above, was chosen. The 72 elements of the 5 x 5 representation for G can also be
generated if g, is anyone of the matrices representing the transformation (V)-(X)
or (XVIII). However, if for g,, the 5 x 5 unit matrix representing (XII) is chosen,
then it would result in a four-element subgroup of Gr. Similatly, choosing (XI) for
g, results in an eight-element subgroup of Gy; choosing (1), (I11), (XIV} or (XV)
for g, results in 12-element subgroups of G; and choosing (IV), (XIII), (XVI) or
(XVII) results in 36-element subgroups of the group G

When ¢ = oy = —V determines the termination of the I, series, from
the definition (3) for F,, it follows that (m,n) can take only the three values
(3,4), (3,5) or (4,5). Smce any one of the numerator parameters of F({) (namely,
Oimn s Xjmn s Xkmn) CAN DE aggs, the indices ¢, 7, & are restricted to 5, Qo 3, which
in turn implies that { can be only 0, 1 or 2. Therefore, {(n,n) being any two of 3, 4,
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5 (3C,) and ! being any one of 0, 1, 2 (3C,), it is obvious that oy Can occur as a
numerator parameter in only (*C, x® C, =) nine series. When r; is replaced by ~r,,
instead of the F,(l) series, the F (!) series arise. From the definition (4) for the
F, (1) series, (7, %), (¢,k) or (7,7} can take the values (3,4), (3,5) or (4,5) so that {
can be 5, 4 or 3 (3C,) and (m, n) can be only (0,1), (0,2) or (1,2). Once again there
are only nine F, series. This explains why in the relations (A.1) to (A.5) amongst the
18 terminating 5 F, series, F,(0), F,(1), F,(2) and F,(3), F,(4), F,(5) alone
occut.
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